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Figure 1: Two agents learn to successfully navigate through a previously unseen environment to find, and jointly lift, a heavy
TV. Without learned communication, agents attempt many failed actions and pickups. With learned communication, agents
send a message when they observe or when they intend to interact with the TV. The agents also learn to grab the opposite
ends of the TV and coordinate to do so.

Abstract

Collaboration is a necessary skill to perform tasks that
are beyond one agent’s capabilities. Addressed extensively
in both conventional and modern AI, multi-agent collabo-
ration has often been studied in the context of simple grid
worlds. We argue that there are inherently visual aspects
to collaboration which should be studied in visually rich
environments. A key element in collaboration is commu-
nication that can be either explicit, through messages, or
implicit, through perception of the other agents and the vi-
sual world. Learning to collaborate in a visual environment
entails learning (1) to perform the task, (2) when and what
to communicate, and (3) how to act based on these com-
munications and the perception of the visual world. In this
paper we study the problem of learning to collaborate di-
rectly from pixels in AI2-THOR and demonstrate the bene-
fits of explicit and implicit modes of communication to per-
form visual tasks. Refer to our project page for more de-
tails: https://prior.allenai.org/projects/
two-body-problem

∗indicates equal contributions.
†work partially done as an intern at Allen Institute for AI

1. Introduction
Developing collaborative skills is known to be more cog-

nitively demanding than learning to perform tasks inde-
pendently. In AI, multi-agent collaboration has been stud-
ied in more conventional [32, 43, 9, 58] and modern set-
tings [53, 28, 79, 35, 56, 61]. These studies have mainly
been performed on grid-worlds and have factored out the
role of perception in collaboration.

In this paper we argue that there are aspects of collabo-
ration that are inherently visual. Studying collaboration in
simplistic environments does not permit to observe the in-
terplay between perception and communication, which is
necessary for effective collaboration. Imagine moving a
piece of furniture with a friend. Part of the collaboration is
rooted in explicit communication through exchanging mes-
sages, and some part of it is done through implicit com-
munication through interpreting perceivable cues about the
other agents behavior. If you see your friend going around
the furniture to grab it, you would naturally stay on the op-
posite side to avoid toppling it over. Additionally, commu-
nication and collaboration should be considered jointly with
the task itself. The way you communicate, either explicitly
or implicitly, in a soccer game is very different from when
you move furniture. This suggests that factoring out per-
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ception and studying collaboration in isolation (grid-world)
might not result in an ideal outcome.

In short, learning to perform tasks collaboratively in a
visual environment entails joint learning of (1) how to per-
form tasks in that environment, (2) when and what to com-
municate, and (3) how to act based on implicit and explicit
communication. In this work, we develop one of the first
frameworks that enables the study of explicitly and im-
plicitly communicating agents collaborating together in a
photo-realistic environment.

To this end we consider the problem of finding and lifting
bulky items, ones which cannot be lifted by a single agent.
While conceptually simple, attaining proficiency in this task
requires multiple stages of communication. The agents
must search for the object of interest in the environment
(possibly communicating their findings to each other), po-
sition themselves appropriately (for instance, opposing each
other), and then lift the object simultaneously. If the agents
position themselves incorrectly, lifting the object will cause
it to topple over. Similarly, if the agents pick up the object
at different time steps, they will not succeed.

To study this task, we use the AI2-THOR virtual envi-
ronment [48], a photo-realistic, physics-enabled environ-
ment of indoor scenes used in past work to study single
agent behavior. We extend AI2-THOR to enable multiple
agents to communicate and interact.

We explore collaboration along several modes: (1) The
benefits of communication for spatially constrained tasks
(e.g., requiring agents to stand across one another while
lifting an object) vs. unconstrained tasks. (2) The abil-
ity of agents to implicitly and explicitly communicate to
solve these tasks. (3) The effect of the expressivity of the
communication channel on the success of these tasks. (4)
The efficacy of these developed communication protocols
on known environments and their generalizability to new
ones. (5) The challenges of egocentric visual environments
vs. grid-world settings.

We propose a Two Body Network, or TBONE, for mod-
eling the policies of agents in our environments. TBONE
operates on a visual egocentric observation of the 3D world,
a history of past observations and actions of the agent, as
well as messages received from other agents in the scene.
At each time step, agents go through two rounds of commu-
nication, akin to sending a message each and then replying
to messages that are received in the first round. TBONE is
trained with a warm start using a variant of DAgger [70],
followed by a minimization of a sum of an A3C loss and
a cross entropy loss between the agents actions and the ac-
tions of an expert policy.

We perform a detailed experimental analysis of the im-
pact of communication using metrics including accuracy,
number of failed pickup actions, and episode lengths. Fol-
lowing our above research questions, our findings show
that: (1) Communication clearly benefits both constrained
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Figure 2: A schematic depicting the inputs to the policy
network. An agent’s policy operates on a partial observation
of the scene’s state and a history of previous observations,
actions, and messages received.

and unconstrained tasks but is more advantageous for con-
strained tasks. (2) Both explicit and implicit communica-
tion are exploited by our agents and both are beneficial,
individually and jointly. (3) For our tasks, large vocabu-
lary sizes are beneficial. (4) Our agents generalize well to
unseen environments. (5) Abstracting our environments to-
wards a grid-world setting improves accuracy, confirming
our notion that photo-realistic visual environments are more
challenging than grid-world like settings. This is consistent
with findings by past works for single agent scenarios.

Finally we interpret the explicit mode of communication
between agents by fitting logistic regression models to the
messages to predict the values such as oracle distance to
target, next action, etc., and find strong evidence matching
our intuitions about the usage of messages between agents.

2. Related Work
We now review related work in the directions of visual

navigation, navigation and language, visual multi-agent re-
inforcement learning (RL), and virtual learning environ-
ments employed in past works to evaluate algorithms.
Visual Navigation: A large body of work focuses on
visual navigation, i.e., locating a target using only vi-
sual input. Prominent early map-based navigation meth-
ods [47, 6, 7, 64] use a global map to make decisions.
More recent approaches [76, 87, 23, 85, 46, 71] reconstruct
the map on the fly. Simultaneous localization and map-
ping [84, 74, 24, 12, 67, 77] consider mapping in isolation.
Upon having obtained a map of the environment, planning
methods [13, 44, 52] yield a sequence of actions to achieve
the goal. Combinations of joint mapping and planning have
also been discussed [27, 50, 49, 31, 3]. Map-less meth-
ods [38, 54, 69, 72, 66, 92, 36] often formulate the task
as obstacle avoidance given an input image or reconstruct
a map implicitly. Conceptually, for visual navigation, we



Agent 1

CNN 
 cθ

LSTM
Comm. &

Belief
Refinement 

Comm. &
Belief

Refinement 
Actor

+

CNN 
 cθ LSTM

Comm. &
Belief

Refinement 

Comm. &
Belief

Refinement 

Agent 2

1
0

1
0

Critic

Actor

Critic

+

+ +

Residual 
connect 

h˜ hˆ h

vθ

πθ

h˜ hˆ h πθ

vθ

Talk stage Reply stage 

Figure 3: Overview of our TBONE architecture for collaboration.

must learn a mapping from visual observations to actions
which influence the environment. Consequently the task is
well suited for an RL formulation, a perspective which has
become popular recently [62, 1, 16, 17, 33, 42, 86, 59, 5,
8, 90, 25, 36, 91, 37]. Some of these approaches compute
actions from observations directly while others attempt to
explicitly/implicitly reconstruct a map.

Following recent techniques, our proposed approach also
uses RL for visual navigation. While our proposed ap-
proach could be augmented with explicit or implicit maps,
our focus is upon multi-agent communication. In the spirit
of factorizing out orthogonal extensions from the model, we
defer such extensions to future work.
Navigation and Language: Another line of work has
focused on communication between humans and virtual
agents. These methods more accurately reflect real-world
scenarios since humans are more likely to interact with an
agent using language rather than abstract specifications. Re-
cently Das et al. [19, 21] and Gordon et al. [34] proposed to
combine question answering with robotic navigation. Chap-
lot et al. [15], Anderson et al. [2] and Hill et al. [39] propose
to guide a virtual agent via language commands.

While language directed navigation is an important task,
we consider an orthogonal direction where multiple agents
need to collaboratively solve a specified task. Since visual
multi-agent RL is itself challenging, we refrain from intro-
ducing natural language complexities. Instead, in this paper,
we are interested in developing a systematic understanding
of the utility and character of communication strategies de-
veloped by multiple agents through RL.
Visual Multi-Agent Reinforcement Learning: Multi-
agent systems result in non-stationary environments posing
significant challenges. Multiple approaches have been pro-
posed over the years to address such concerns [82, 83, 81,
30]. Similarly, a variety of settings from multiple coopera-
tive agents to multiple competitive ones have been investi-
gated [51, 65, 57, 11, 63, 35, 56, 29, 61].

Among the plethora of work on multi-agent RL, we want
to particularly highlight work by Giles and Jim [32], Kasai
et al. [43], Bratman et al. [9], Melo et al. [58], Lazaridou

et al. [53], Foerster et al. [28], Sukhbaatar et al. [79] and
Mordatch and Abbeel [61], all of which investigate the dis-
covery of communication and language in the multi-agent
setting using maze-based tasks, tabular setups, or Markov
games. For instance, Lazaridou et al. [53] perform exper-
iments using a referential game of image guessing, Foer-
ster et al. [28] focus on switch-riddle games, Sukhbaatar
et al. [79] discuss multi-turn games on the MazeBase envi-
ronment [80], and Mordatch and Abbeel [61] evaluate on a
rectangular environment with multiple target locations and
tasks. Most recently, Das et al. [20] demonstrate, especially
in grid-world settings, the efficacy of targeted communi-
cation where agents must learn to whom they should send
messages.

Our work differs from the above body of work in that
we consider communication for visual tasks, i.e., our agents
operate in rich visual environments rather than a grid-like
maze, a tabular setup or a Markov game. We are partic-
ularly interested in investigating how communication and
perception support each other.
Reinforcement Learning Environments: As just dis-
cussed, our approach is evaluated on a rich visual environ-
ment. Suitable environment simulators are AI2-THOR [48],
House3D [88], HoME [10], MINOS [73] for Matter-
port3D [14] and SUNCG [78]. Common to these envi-
ronments is the goal of modeling real world living envi-
ronments with substantial visual diversity. This is in con-
trast to other RL environments such as the arcade environ-
ment [4], Vizdoom [45], block towers [55], Malmo [41],
TORCS [89], or MazeBase [80]. Of these environments,
we chose AI2-THOR as it was easy to extend, provides high
fidelity images, and has interactive physics enabled scenes,
opening up interesting multi-agent research directions be-
yond this current work.

3. Collaborative Task Completion

We are interested in understanding how two agents can
learn, from pixels, to communicate so as to effectively and
collaboratively solve a given task. To this end, we develop a
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Figure 4: Communication and belief refinement module for
the talk stage (marked with the superscript of (T )) of ex-
plicit communication. Here our vocab. is of size K = 2.

task for two agents which consists of two components, each
tailored to a desirable skill for indoor agents. The compo-
nents are: (1) visual navigation, which the agents may solve
independently, but which may also benefit from some col-
laboration; and (2) jointly synchronized interaction with the
environment, which typically requires collaboration to suc-
ceed. The choice of these components stems from the fact
that navigating to a desired position in an environment or
to locate a desired object is a quintessential skill for an in-
door agent, and synchronized interaction is fundamental to
understanding any collaborative multi-agent setting.

We first discuss the collaborative task more formally,
then detail the components of our network, TBONE, used
to complete the task.

3.1. Task: Find and Lift Furniture

We task two agents to lift a heavy target object in an en-
vironment, a task that cannot be completed by a single agent
owing to the weight of the object. The two agents as well
as the target object are placed at random locations in a ran-
domly chosen AI2-THOR living room scene. Both agents
must locate the target, approach it, position themselves ap-
propriately, and then simultaneously lift it.

To successfully complete the task, both agents perform
actions over time according to the same learned policy
(Fig. 2). Since our agents are homogeneous, we share the
policy parameters for both agents. Previous works [35, 61]
have found this to train agents more efficiently. For an
agent, the policy operates on (1) an ego-centric observa-
tion of the environment as well as a previous history of
(a) observations, (b) actions taken by the agent, and (c)
messages sent by the other agent. At each time step, the
two agents process their current observations and then per-
form two rounds of explicit communication. Each round of
communication involves each of the agents sending a sin-
gle message to the other. The agents also have the ability to
watch the other agent (when in view) and possibly even rec-
ognize their actions over time, thereby using implicit com-

munication as a means of gathering information.
More formally, an agent perceives the scene at time t

in the form of an image ot and chooses its action at ∈
A by computing a policy, i.e., a probability distribution
πθ(at|ot, ht−1), over all actions at ∈ A. In our case,
the images ot are first-person views obtained from AI2-
THOR. Following classical recurrent models, our policy
leverages information computed in the previous time-step
via the representation ht−1. The set of available actions A
consists of the five options MOVEAHEAD, ROTATELEFT,
ROTATERIGHT, PASS, and PICKUP. The actions MOVEA-
HEAD, ROTATELEFT, and ROTATERIGHT allow the agent
to navigate. To simplify the complexities of continuous time
movement we let a single MOVEAHEAD action correspond
to a step of size 0.25 meters, a single ROTATERIGHT ac-
tion correspond to a 90 degree rotation clockwise, and a
single ROTATELEFT action correspond to a 90 degree ro-
tation anti-clockwise. The PASS action indicates that the
agent should stand-still and PICKUP is the agent’s attempt
to pick up the target object. Critically, the PICKUP action
has the desired effect only if three preconditions are met,
namely both agents must (1) be within 1.5 meters of the ob-
ject and be looking directly at it, (2) be a minimum distance
away from one another, and (3) carry out the PICKUP action
simultaneously. Note that asking agents to be at a minimum
distance from one another amounts to adding specific con-
straints on their relative spatial layouts with regards to the
object and hence requires the agents to reason about such
relationships. This is akin to requiring the agents to stand
across each other when they pick up the object. The motiva-
tion to model spatial constraints with a minimum distance
constraint is to allow us to easily manipulate the complexity
of the task. For instance, setting this minimum distance to
0 loosens the constraints and only requires agents to meet
two of the above preconditions.

In our experiments, we train agents to navigate within
and interact with 30 indoor environments. Specifically, an
episode is considered successful if both agents navigate to
a known object and, jointly, lift it within a fixed number of
time steps. As our focus is the study of collaboration and
not primarily object recognition, we keep the sought object,
a television, constant. Importantly, environments as well
as the agents’ start locations and the target object location
are randomly assigned at the start of each episode. Conse-
quently, the agents must learn to (1) search for the target
object in different environments, (2) navigate towards it, (3)
stay within the object’s vicinity until the second agent ar-
rives, (4) coordinate that both agents are apart from each
other by at least the specified distance, and (5) finally and
jointly perform the pickup action.

Intuitively, we expect the agents to perform better on this
task if they can communicate with each other. We conjec-
ture that explicit communication will allow them to both
signal when they have found the object and, after naviga-



Data Accuracy Reward
Missed
pickups

Unsuccess.
pickups

Visual 59.0 ±4.0 -2.7 ±0.3 0.3 ±0.09 2.9 ±0.8
Visual+depth 65.7 ±3.9 -2.0 ±0.3 0.4 ±0.1 3.2 ±0.9

Grid-world 78.2 ±3.4 -0.6 ±0.2 0.1 ±0.05 0.7 ±0.1

Table 1: Effect of adding oracle depth as well as moving to
a grid-world setting on unseen scenes, Constrained task.

tion, help coordinate when to attempt a PICKUP, whereas
implicit communication will help to reason about their rel-
ative locations with regards to each other and the object. To
measure the impact of explicit and implicit means of com-
munication in the given task, we train models with and with-
out message passing as well as by making agents (in)visible
to one another. Explicit communication would seem to be
especially important in the case where implicit communi-
cation isn’t possible. Without any communication, there
seems to be no better strategy than for both agents to in-
dependently navigate to the object and then repeatedly try
PICKUP actions in the hope that they will be, at some point,
in sync. The expectation that such a policy may be forth-
coming gives rise to one of our metrics, namely the count
of failed pickup events among both agents in an episode.
We discuss metrics and results in Section 4.

3.2. Network Architecture

In the following we describe the learned policy (actor)
πθ(at|ot, ht−1) and value (critic) vθ(ot, ht−1) functions for
each agent in greater detail. See Fig. 3 for a high level
visualization of our network structure. Let θ represent a
catch-all parameter encompassing all the learnable weights
in TBONE. At the t-th timestep in an episode we obtain
as an agent’s observation, from AI2-THOR, a 3 × 84 × 84
RGB image ot which is then processed by a four layer CNN
cθ into the 1024-dimensional vector cθ(ot). Onto cθ(ot) we
append an 8-dimensional learnable embedding e which, un-
like all other weights in the model, is not shared between
the two agents. This agent embedding e gives the agents
the capacity to develop distinct complementary strategies.
The concatenation of cθ(ot) and e is fed, along with his-
torical embeddings from time t− 1, into a long-short-term-
memory (LSTM) [40] cell resulting in a 512-dimensional
output vector h̃t capturing the beliefs of the agent given its
prior history and most recent observation. Intuitively, we
now would like the two agents to refine their beliefs via
communication before deciding on a course of action. We
consider this process in several stages (Fig. 4).
Communication: We model communication by allowing
the agents to send one another a d-dimensional vector de-
rived by performing soft-attention over a vocabulary of a
fixed size K. More formally, let Wsend ∈ RK×512, bsend ∈
R512, and Vsend ∈ Rd×K be (learnable) weight matri-
ces with the columns of Vsend representing our vocabulary.
Then, given the representation h̃t described above, the agent

computes soft-attention over the vocabulary producing the
message msend = Vsend softmax(Wsend h̃t + bsend) ∈ Rd,
which is relayed to the other agent.
Belief Refinement: Given the agents’ current beliefs h̃t and
the message mreceived from the other agent, we model the
process of refining one’s beliefs given new information us-
ing a two layer fully connected neural network with a resid-
ual connection. In particular, h̃t and mreceived are concate-
nated, and new beliefs ĥt are formed by computing ĥt =

h̃t+ReLU(W2 ReLU(W1[h̃t ; mreceived]+b1)+b2),where
W1 ∈ R512×(512+d), b1, b2 ∈ R512, and W2 ∈ R512×512

are learnable weight matrices. We set the value of d to 8.
Reply and Additional Refinement: The above step is fol-
lowed by one more round of communication and belief re-
finement by which the representation ĥt is transformed into
ht. These additional stages have new sets of learnable pa-
rameters including a new vocabulary matrix. Note that, un-
like in the standard LSTM framework where h̃t−1 would be
fed into the cell at time t, we instead give the LSTM cell the
refined vector ht−1.
Linear Actor and Critic: Finally the policy and
value functions are computed as πθ(at|ot, ht−1) =
softmax(Wactor ht+bactor), and vθ(ot, ht−1) = Wcritic ht+
bcritic where Wactor ∈ R5×512, bactor ∈ R5, Wcritic ∈
R1×512, and bcritic ∈ R1 are learned.

3.3. Learning
Similar to others [19, 36, 18, 22], we found training

of our agents from scratch to be infeasible when using a
pure reinforcement learning (RL) approach, e.g., with asyn-
chronous actor critic (A3C) [60], even in simplified settings,
without extensive reward shaping. Indeed, often the agents
must make upwards of 60 actions to navigate to the object
and will only successfully complete the episode and receive
a reward if they jointly pick up the object. This setting of
extremely sparse rewards is a well known failure mode of
standard RL techniques. Following the above prior work,
we use a “warm-start” by training with a variant of DAg-
ger [70]. We train our models online using imitation learn-
ing for 10,000 episodes with actions for episode i sampled
from the mixture (1− αi)πθi−1 + αiπ

∗ where θi−1 are the
parameters learned by the model up to episode i, π∗ is an ex-
pert policy (described below), and αi decays linearly from
0.9 to 0 as i increases. This initial warm-start allows the
agents to learn a policy for which rewards are far less sparse,
allowing traditional RL approaches to be applicable. Note
that our expert supervision only applies to the actions, there
is no supervision for how agents should communicate. In-
stead the agents must learn to communicate in such a way
that would increase the probability of expert actions.

After the warm-start period, trajectories are sampled
purely from the agent’s current policy and we train our
agents by minimizing the sum of an A3C loss, and a cross
entropy loss between the agents’ actions and the actions of
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Figure 5: Unseen scenes metrics (Constrained task): (a) Failed pickups (b) Missed pickups (c) Relative ep. len (d) Accuracy.

an expert policy. The A3C and cross entropy losses here are
complementary, each helping correct for a deficiency in the
other. Namely, the gradients from an A3C loss tend to be
noisy and can, at times, derail or slow training; the gradients
from the cross entropy loss are noise free and thereby stabi-
lize training. A pure cross entropy loss however fails to suf-
ficiently penalize certain undesirable actions. For instance,
diverging from the expert policy by taking a MOVEAHEAD
action when directly in front of a wall should be more
strongly penalized than when the area in front of the agent
is free as the former case may result in damage to the agent;
both these cases are penalized equally by a cross entropy
loss. The A3C loss, on the other hand, accounts for such
differences easily so long as they are reflected by the re-
wards the agent receives.

We now describe the expert policy. If both agents can
see the TV, are within 1.5 meters of it, and are at least a
given minimum distance apart from one another then the
expert action is to PICKUP for both agents. Otherwise given
a fixed scene and TV position we obtain, from AI2-THOR,
the set T = {t1, . . . , tm} of all positions (on a grid with
square size 0.25 meters) and rotations within 1.5 meters of
the TV from which the TV is visible. Letting `ik be the
length of the shortest path from the current position of agent
i ∈ {0, 1} to tk we then assign each (tj , tk) ∈ T × T
the score sjk = `0j + `1k. We then compute the lowest
scoring tuple (s, t) ∈ T × T for which s and t are at least a
given minimum distance apart and assign agent 0 the expert
action corresponding to the first navigational step along the
shortest path from agent 0 to s (and similarly for agent 1
whose expert goal is t).

Note that our training strategy and communication
scheme can be extended to more than two agents. We de-
fer such an analysis to future work, a careful analysis of the
two-agent setting being an appropriate first step.

Implementation Details. Each model was trained for
100,000 episodes. Each episode is initialized in a random
train (seen) scene of AI2-THOR. Rewards provided to the
agents are: 1 to both agents for a successful pickup action,
constant -0.01 step penalty to discourage long trajectories, -
0.02 for any failed action (e.g., running into a wall) and -0.1
for a failed pickup action. Episodes run for a maximum of

500 steps (250 steps for each agent) after which the episode
is considered failed.

4. Experiments
In this section, we present our evaluation of the effect

of communication towards collaborative visual task com-
pletion. We first briefly describe the multi-agent extensions
made to AI2-THOR, the environments used for our anal-
ysis, the two tasks used as a test bed and metrics consid-
ered. This is followed by a detailed empirical analysis of
the tasks. We then provide a statistical analysis of the ex-
plicit communication messages used by the agents to solve
the tasks, which sheds light on their content. Finally we
present qualitative results.
Framework and Data. We extend the AI2-THOR envi-
ronment to support multiple agents that can each be inde-
pendently controlled. In particular, we extend the existing
initialization action to accept an agentCount parameter
allowing an arbitrarily large number of agents to be speci-
fied. When additional agents are spawned, each is visually
depicted as a capsule of a distinct color. This allows agents
to observe each other’s presence and impact on the environ-
ment, a form of implicit communication. We also provide
a parameter to render agents invisible to one another, which
allows us to study the benefits of implicit communication.
Newly spawned agents have the full capabilities of a single
agent, being able to interact with the environment by, for ex-
ample, picking up and opening objects. These changes are
publicly available with AI2-THOR v1.0. We consider the
30 AI2-THOR living room scenes for our analysis, since
they are the largest in terms of floor area and also contain a
large amount of furniture. We train on 20 and test on the 20
seen scenes as well as the remaining 10 unseen ones.
Tasks. We consider two tasks, both requiring the two agents
to simultaneously pick up the TV in the environment: (1)
Unconstrained: No constraints are imposed here with re-
gards to the locations of the agents with respect to each
other. (2) Constrained: The agents must be at least 8 steps
from each other (akin to requiring them to stand across each
other when they pick up the object). Intuitively, we expect
the Constrained setting to be more difficult than the Un-
constrained, since it requires the agents to spatially reason
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about themselves and objects in the scene. For each of the
above tasks, we train 4 variants of TBONE, resulting from
switching explicit and implicit communication on and off.
Switching off implicit communication amounts to rendering
the other agent invisible.
Metrics. We consider the following metrics: (1) Reward,
(2) Accuracy: % successful episodes, (3) Number of Failed
pickups, (4) Number of Missed pickups: where both agents
could have picked up the object but did not, (5) Relative
episode length: relative to an oracle. These metrics are ag-
gregated over 400 random initializations (Unseen scenes:
10 scenes × 40 inits, Seen scenes: 20 scenes × 20 inits).
Note that accuracy alone isn’t revealing enough. Naı̈ve
agents that wander around and randomly pick up objects
will eventually succeed. Also, agents that correctly locate
the TV and then keep attempting a pickup in the hope of
synchronizing with the other agent will also succeed. Both
these cases will however do poorly on the other metrics.
Quantitative analysis. All plots and metrics referenced in
this section contain 90% confidence intervals.

Fig. 5 compares the four metrics: Accuracy, Failed pick-
ups, Missed pickups, and Relative episode length for unseen
scenes and the Constrained task. With regards to accuracy,
explicit+implicit communication fares only moderately bet-
ter than implicit communication, but the need for explicit
communication is dramatic in the absence of an implicit
one. But when one considers all metrics, the benefits of
having both explicit and implicit communication are clearly
visible. The number of failed and missed pickups is lower,
while episode lengths are a little better than just using im-
plicit communication. The differences between just explicit
vs. just implicit also shrink when looking at all metrics to-
gether. However, across the board, it is clear that communi-
cating is advantageous over not communicating.

Fig. 6 shows the rewards obtained by the 4 variants of
our model on seen and unseen environments for the Con-
strained task. While rewards on seen scenes are unsurpris-
ingly higher, the models with communication do general-
ize well to unseen environments. Adding the two means of
communication is more beneficial than either and far better
than not having any means of communication. Interestingly
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Figure 7: Constrained vs. unconstrained task (on unseen
scenes): (left) Accuracy, (right) Relative episode length.

just implicit communication fares better than just explicit,
on accuracy.

Fig. 7 presents the accuracy and relative episode lengths
metrics for the unseen scenes and Unconstrained task in
contrast to the Constrained task. In these plots, for brevity
we only consider the extreme cases of having full commu-
nication vs. no communication. As expected, the Uncon-
strained setting is easier for the agents with higher accu-
racy and lower episode lengths. Communication is also ad-
vantageous in the Unconstrained setting, but its benefits are
lesser compared to the Constrained setting.

Table 1 shows a large jump in accuracy when we pro-
vide a perfect depth map as an additional input on the Con-
strained task, indicating that improved perception is benefi-
cial to task completion. We also obtained significant jumps
in accuracy (from 31.8 ± 3.8 to 37.2 ± 4.0) when we in-
crease the size of our vocabulary from 2 to 8. This analy-
sis was performed in the explicit-only communication and
Constrained environment setup. However, note that even
with a vocabulary of 2, agents may be using the full contin-
uous spectrum to encode more nuanced events.
Grid-world abstraction. In order to assess impact of learn-
ing to communicate from pixels rather than, as in most prior
work, from grid-world environments, we perform a direct
translation of our task into a grid-world and compare its
performance to our best model. We transform the 1.25m
× 2.75m area in front of our agent into a 5× 11 grid where
each square is assigned a 16 dimensional embedding based
on whether it is free space, occupied by another agent, oc-
cupied by the target object, otherwise unreachable, or un-
known (in the case the grid square leaves the environment).
The agents then move in AI2-THOR but perceive this par-
tially observable grid-world. Agents in this setting acquire
a large bump in accuracy on the Constrained task (Table 1),
confirming our claim that photo-realistic visual environ-
ments are more challenging than grid-world like settings.
Interpreting Communication. While we have seen, in
Section 4, that communication can substantially benefit our
task, we now investigate what these agents have learned
to communicate. We focus on the communication strate-
gies learned by agents with a vocabulary of two in the
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Figure 8: Single episode trajectory with associated agent communication.

β≤ β≤t β≤r βsee βsee
t βsee

r

Est. 0.35 1.23 -0.35 0.88 0.59 -1.1
SE 0.013 0.019 0.013 0.013 0.015 0.013

βpick βpick
t,0 βpick

r,0 βpick
t,1 βpick

r,1 βpick
∨,r

Est 1.06 -0.01 -0.04 0 -0.03 -1.09
SE 0.012 0.007 0.006 0.007 0.006 0.021

Table 2: Estimates, and corresponding robust bootstrap
standard errors, of the parameters from Section 4.

Constrained setting. Fig. 8 displays one episode trajectory
of the two agents with the corresponding communication.
From Fig. 8(b) we generate hypotheses regarding commu-
nication strategies. Suppressing the dependence on episode
and step, for i ∈ {0, 1} let ti be the weight assigned by
agent i to the 1st element of the vocabulary in the 1st round
of communication, and similarly let ri be as ti but for the
2nd round of communication. When the agent with the red
trajectory (henceforth called agent 0 or A0) begins to see
the TV the weight t0 increases and remains high until the
end of the episode. This suggests that the 1st round of com-
munication may be used to signify closeness to or visibility
of the TV. On the other hand, the pickup actions taken by
the two agents are associated with the agents making r0 and
r1 simultaneously small.

To add evidence to these hypotheses we fit logistic re-
gression models to predict, from (functions of) ti and ri,
two oracle values (e.g., whether the TV is visible) and
whether or not the agents will attempt a pickup action. As
the agents are largely symmetric we take the perspective
of A0 and define the models σ−1 P (A0 is≤ 2m from the TV) =

β≤ + β≤t t0 + β≤r r0, σ−1 P (A0 sees TV and is≤ 1.5m from it) =
βsee + βsee

t t0 + βsee
r r0, and σ−1 P (A0 attempts a pickup action) =

βpick+
∑
i∈{0,1}(β

pick
t,i ti+β

pick
r,i ri)+β

pick
∨,r max(r0, r1) where

σ−1 is the logit function. Details of how these models are
fit can be found in the appendix.

From Table 2, which displays the estimates of the above
parameters along with their standard errors, we find strong
evidence for the above intuitions. Note, for all of the esti-

mates discussed above, the standard errors are very small,
suggesting highly statistically significant results. The large
positive coefficients associated with β≤t and βsee

t suggest
that, conditional on r0 being held constant, an increase in
the weight t0 is associated with a higher probability of A0

being near, and seeing, the TV. Note also that the estimated
value of βsee

r is fairly large in magnitude and negative. This
is very much in line with our prior hypothesis that r0 is
made small when agent 0 wishes to signal a readiness to
pickup the object. Finally, essentially all estimates of co-
efficients in the final model are close to 0 except for βpick

∨,r
which is large and negative. Hence, conditional on other
values being fixed, max(r0, r1) being small is associated
with a higher probability of a subsequent pickup action. Of
course r0, r1 ≤ max(r0, r1) again lending evidence to the
hypothesis that the agents coordinate pickup actions by set-
ting r0, r1 to small values.

5. Conclusion
We study the problem of learning to collaborate in visual
environments and demonstrate the benefits of learned ex-
plicit and implicit communication to aid task completion.
We compare performance of collaborative tasks in photo-
realistic visual environments to an analogous grid-world en-
vironment, to establish that the former are more challeng-
ing. We also provide a statistical interpretation of the com-
munication strategy learned by the agents.

Future research directions include extensions to more
than two agents, more intricate real-world tasks and scal-
ing to more environments. It would be exciting to enable
natural language communication between the agents which
also naturally extends to involving human-in-the-loop.
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[89] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis,
R. Coulom, and A. Sumner. Torcs, the open racing car sim-
ulator, 2013. 3

[90] J. Zhang, J. T. Springenberg, J. Boedecker, and W. Bur-
gard. Deep reinforcement learning with successor features
for navigation across similar environments. arXiv preprint
arXiv:1612.05533, 2016. 3

[91] Y. Zhu, D. Gordon, E. Kolve, D. Fox, L. Fei-Fei,
A. Gupta, R. Mottaghi, and A. Farhadi. Visual Seman-
tic Planning using Deep Successor Representations. In
https://arxiv.org/abs/1705.08080, 2017. 3

[92] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-
Fei, and A. Farhadi. Target-driven Visual Navigation in In-
door Scenes using Deep Reinforcement Learning. In Proc.
ICRA, 2017. 2



A. Appendix
This appendix presents the following content:

1. Visualizations of the grid-world abstraction of our
task,

2. Our learning algorithm,
3. Interplay between talk and reply stages of the commu-

nication and belief refinement module,
4. Implementation details of model
5. A detailed explanation of metrics used in our paper,
6. Quantitative evaluation of our models but now evalu-

ated on seen scenes,
7. Statistical analysis of agent communication strategies

but now demonstrated on unseen scenes,
8. Qualitative results of agents with different commu-

nication abilities deployed on unseen scenes. This
includes clip summaries with agent communication
signals for video https://youtu.be/9sQhD_
Gin5M.

A.1. AI2-THOR to Grid-world

In order to assess the impact of learning to communicate
directly from pixels rather than, as in most prior work, from
grid-world environments, we perform a direct translation of
our task into a grid-world and compare its performance to
our best model. For this purpose we transform AI2-THOR
into a grid-world environment. Figure 10 visualizes, for
a single AI2-THOR scene, this transformation. To make
our comparison fair, as our pixel-based agents only obtain
partial information about their environment at any given
timestep, we impose the same restriction on our grid-world
agents by only providing them with an egocentric 5 × 11
view of their environment (see Figure 11).

A.2. Learning algorithm

Algorithm 1 succinctly summarizes our learning proce-
dure as otherwise described in Section 3.3 of the main pa-
per.

A.3. Talk and Reply stages

Explicit communication happens via two stages - talk
and reply. As illustrated in Fig. 9, each stage has it’s own
weights (Vsend, Wsend, W1, W2). These are clearly marked
using superscripts of (T ) and (R) for the talk and reply stage,
respectively.

A.4. Implementation Details.

We use the same hyperparameters and embedding di-
mensionality in all of our experiments. In our A3C loss
we discount rewards with a factor of γ = 0.99 and weight
the entropy maximization term with a factor of β = 0.01.
We use the Adam optimizer with a learning rate of 10−4,

Algorithm 1 Learning Algorithm
1: Randomly initialize shared model weights θshared
2: Set global episode counter c← 0
3: while c < maxEpisodes in parallel do
4: θ ← θshared
5: c← c+ 1
6: Randomly choose environment
7: Randomize agents’ positions and TV location
8: Set α← 0.9 ·max(1− c/10000, 0)
9: Set π ← (1− α) · πθ + α · π∗

10: Roll out trajectory of length ≤ 500 from both
agents using π.

11: La3c ← A3C loss for trajectory
12: Lcross ← cross entropy loss of trajectory w.r.t. π∗

13: if no expert actions sampled in trajectory then
14: g ← ∇θ(La3c + Lcross)
15: else
16: g ← ∇θLcross

17: Perform one gradient update of θshared using
ADAM with gradients g and statistics shared across
processes

18: end

momentum values of 0.9 and 0.999 (for the first and sec-
ond moments respectively), and share optimizer statistics
across processes. Gradient steps are made in the hogwild
approach, that is without explicit synchronization or locks
between processes [68].

Each model was trained for 100,000 episodes. Each
episode is initialized in a random train (seen) scene of AI2-
THOR. Rewards provided to the agents are: 1 to both agents
for a successful pickup action, constant -0.01 step penalty
to discourage long trajectories, -0.02 for any failed action
(e.g., running into a wall) and -0.1 for a failed pickup ac-
tion. Episodes run for a maximum of 500 total steps (250
steps for each agent) after which the episode is considered
failed. The minimum aggregate achievable reward in an
episode, obtained by successive attempting failed pickup
actions by both agents is -65 while the maximum reward
is 1.98 achieved by both agents immediately picking up the
object as their first action and only receiving a single step
penalty.

A.5. Metrics

We now present a more detailed explanation of the met-
rics we use to evaluate our models.

(1) Per agent reward structure:

• +1 for performing a successful joint pickup,

• -0.1 for a failed pickup action,

• -0.02 for any other failed action (trying to move
into walls, furniture, etc.), and

https://youtu.be/9sQhD_Gin5M
https://youtu.be/9sQhD_Gin5M
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Figure 9: Two stages of communication and belief refinement module - talk and reply. The refined belief from the talk
stage is further refined by another round of communication between agents at the reply stage. In this illustration the size of
vocabulary is 2 i.e. K = 2.

• -0.01 for each step to encourage short trajectories.

(2) Accuracy: the percentage of episodes which led to the
successful pickup action by both agents.

(3) Number of unsuccessful pickups: total number of
pickup actions attempted by both agents which didn’t
lead to the target being picked up. The three precondi-
tions necessary for a successful joint pickup action are
as follows.

(i) Both agents perform the pickup action simultane-
ously,

(ii) Both agents are closer than 1.5m to the target and
the target is visible, and

(iii) Both agents are a minimum distance apart from
each other (0 for the Unconstrained and 8 steps
= 2 meters in the manhattan distance for the Con-
strained setting).

(4) Number of missed pickups: total number of episode
steps where both agents could have picked up the ob-
ject but did not. This is the number of opportunities
where 3ii and 3iii were met, but the agents didn’t per-
form simultaneous pickup actions.

(5) Relative episode length: the quantity

Episode length following agent policy (π)

Episode length following oracle policy (π∗)

As it has access to information not available to the
agents, our expert policy is also referred to as the or-
acle policy. As mentioned in the paper, the oracle plans
a shortest path from each agent location to the target.
This is achieved by leveraging the full map of the scene
(i.e., free space, occupied areas, location of other agent,
and the target location).

A.6. Quantitative evaluation

In this section we provide quantitative evaluation results
of variants of TBONE. We provide results on seen (train)
and unseen (test) scenes. Many of the unseen scenes results
are already included in the main paper, but we reproduce
the full suite of graphs here, for ease of comparison.

For the Constrained task, Fig. 12 and Fig. 13 show the
above metrics on seen and unseen scenes, respectively. For
the Unconstrained task, Fig. 14 and Fig. 15 show the above
metrics on seen and unseen scenes, respectively.

On the Constrained task in seen scenes (Fig. 12), having
both modes of communication clearly produces better re-
wards. And having either or both modes of communication
easily outperforms agents with no means of communica-
tion. While the accuracy metric is similar to having only im-
plicit means of communication, the number of unsuccessful
pickups, missed pickups, and relative episode lengths met-
rics show the benefit of having both modes of communica-
tion over any one of them. A similar trend is seen in unseen
scenes for the same task (Fig. 13).

On the Unconstrained task, the benefits of communica-
tion are, as expected, less dramatic (Fig. 14 and Fig. 15).
Since the task is simpler and potentially can be solved with-
out communication, agents with no means of communica-
tion are able to obtain high accuracies. But in the absence
of communication, agents end up having a large number of
unsuccessful pickups. This is expected. With no means of
communication, agents simply go close to the TV and start
attempting pickups. Only with communication can they
lower this metric by coordinating with each other.

A.7. Interpreting Communication

To fit the logistic models described in Section 4 of the
main paper we randomly initialize 2,687 episodes on the
20 training scenes from which we obtain a corresponding



(a) Top view of AI2-THOR scene (b) Corresponding grid-world

Figure 10: An AI2-THOR scene from a top-down view along the corresponding grid-world. Note that each agent (teal
triangles) only observes a small portion of the grid-world at any given time-step, see Figure 11 for details. Here each color
corresponds to a different category: freespace (green), impassable terrain (red), target object (orange), and unknown (purple).

(a) First-person AI2-
THOR agent view

(b) Agent partially ob-
served grid-world over-
layed on map view

(c) Grid-world corre-
sponding to agent view

Figure 11: First person viewpoints of agents in AI2-THOR and the corresponding grid-world observations. Note that white
squares are unobserved and blue squares correspond to another agent, see Figure 10 for a description of the other colors.

number of agent trajectories. Treating each step in these
trajectories as a single observation, this results in a dataset
containing 143,401 samples. We fit these logistic models
using the statsmodels package [75] in Python. As ob-
servations within a single episode are highly correlated, we
use the bootstrap [26] to obtain robust standard errors for
our estimates.

As the analysis above is done on the seen scenes, it begs
the question of whether the same trends occur when agents
communicate in unseen environments. To address this, we

sample 1,333 agent episodes on the 10 test scenes result-
ing in a dataset of 201,738 samples. We fit identical logis-
tic regression models to this dataset as in the main paper
and report the resulting estimates and standard errors in Ta-
ble 3. While several estimates differ, in a statistically signif-
icant way, from those on the seen scenes, all trends remain
the same suggesting that agents communicate in largely the
same way in unseen environments as they do in previously
seen environments.
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Figure 12: Constrained task, seen scenes.
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Figure 13: Constrained task, unseen scenes.
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Figure 14: Unconstrained task, seen scenes.
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Figure 15: Unconstrained task, unseen scenes.



β≤ β≤t β≤r βsee βsee
t βsee

r

Est. 0.07 1.29 -0.14 0.65 0.57 -0.88
SE 0.033 0.027 0.031 0.041 0.027 0.042

βpick βpick
t,0 βpick

r,0 βpick
t,1 βpick

r,1 βpick
∨,r

Est 1.15 -0.0 -0.04 -0.01 -0.04 -1.17
SE 0.037 0.009 0.009 0.009 0.011 0.041

Table 3: Estimates, and corresponding robust bootstrap
standard errors, of the parameters from the main paper’s
Section 4 when using trajectories sampled from the unseen
scenes as described in Section A.7.

A.8. Qualitative results
A.8.1 Effect of communication

We present qualitative results of agents with three commu-
nication abilities: implicit + explicit vs. implicit only vs. no
communication. We compare the effect by deploying this
agents for a particular initialization of an episode i.e. the
same scene, agents’ start locations and target object loca-
tion. We find both explicit and implicit communication help
achieve the task faster as seen Fig. 16, Fig. 17 and Fig. 18
which have episode lengths of 86, 165 and 250 respectively.
Another such initialization is compared in Fig. 19, Fig. 20
and Fig. 21 which have episode lengths of 17, 72 and 217
respectively.

A.8.2 Video

The associated video includes episode visualizations for
the Constrained task on Unseen scenes, and can be found
here: https://youtu.be/9sQhD_Gin5M. For these
episodes we ran inference on the model with both explicit
and implicit communication. The six clips in the video are
summarized in Fig. 22, Fig. 23, Fig. 24, Fig. 25, Fig. 26 and
Fig. 27. The first four culminated in successful pickup of
the target object. The last two videos highlight typical error
modes.

https://youtu.be/9sQhD_Gin5M
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Figure 16: Initialization 1: With explicit and implicit communication, episode length is 86 per agent. Associated agent
communication in plot below, see Figure 8 in the main paper for a legend.



Figure 17: Initialization 1: With only implicit communication, episode length is 165 per agent.

Figure 18: Initialization 1: With no communication, episode length is 250 per agent (unsuccessful).
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Figure 19: Initialization 2: With explicit and implicit communication, episode length is 17 per agent. Associated agent
communication in plot below, see Figure 8 in the main paper for a legend.



Figure 20: Initialization 2: With only implicit communication, episode length is 72 per agent.

Figure 21: Initialization 2: With no communication, episode length is 217 per agent.
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Figure 22: Clip 1 summary, see Figure 8 in the main paper for a legend.
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Figure 23: Clip 2 summary, see Figure 8 in the main paper for a legend.
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Figure 24: Clip 3 summary, see Figure 8 in the main paper for a legend.
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Figure 25: Clip 4 summary, see Figure 8 in the main paper for a legend.
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Figure 26: Clip 5 summary, see Figure 8 in the main paper for a legend.
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Figure 27: Clip 6 summary, see Figure 8 in the main paper for a legend.


