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Abstract
Exploration is critical for good results in deep re-
inforcement learning and has attracted much at-
tention. However, existing multi-agent deep re-
inforcement learning algorithms still use mostly
noise-based techniques. Very recently, explo-
ration methods that consider cooperation among
multiple agents have been developed. However,
existing methods suffer from a common chal-
lenge: agents struggle to identify states that are
worth exploring, and hardly coordinate explo-
ration efforts toward those states. To address
this shortcoming, in this paper, we propose coop-
erative multi-agent exploration (CMAE): agents
share a common goal while exploring. The goal
is selected from multiple projected state spaces
via a normalized entropy-based technique. Then,
agents are trained to reach this goal in a coor-
dinated manner. We demonstrate that CMAE
consistently outperforms baselines on various
tasks, including a sparse-reward version of the
multiple-particle environment (MPE) and the
Starcraft multi-agent challenge (SMAC).

1. Introduction
Multi-agent reinforcement learning (MARL) is an increas-
ingly important field. Indeed, many real-world problems
are naturally modeled using MARL techniques. For in-
stance, tasks from areas as diverse as robot fleet coordi-
nation (Swamy et al., 2020; Hüttenrauch et al., 2019) and
autonomous traffic control (Bazzan, 2008; Sunehag et al.,
2018) fit MARL formulations.

To address MARL problems, early work followed inde-
pendent single-agent reinforcement learning work (Tam-
puu et al., 2015; Tan, 1993; Matignon et al., 2012). How-
ever, more recently, specifically tailored techniques such
as monotonic value function factorization (QMIX) (Rashid
et al., 2018), multi-agent deep deterministic policy gradient
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(MADDPG) (Lowe et al., 2017), and counterfactual multi-
agent policy gradients (COMA) (Foerster et al., 2018) have
been developed. Those methods excel in a multi-agent
setting because they address the non-stationary issue of
MARL via a centralized critic. Despite those advances and
the resulting reported performance improvements, a com-
mon issue remains: all of the aforementioned methods use
exploration techniques from classical algorithms. Specifi-
cally, these methods employ noise-based exploration, i.e.,
the exploration policy is a noisy version of the actor pol-
icy (Rashid et al., 2020a; Lowe et al., 2017; Foerster et al.,
2016; Rashid et al., 2018; Yang et al., 2018).

It was recently recognized that use of classical exploration
techniques is sub-optimal in a multi-agent reinforcement
learning setting. Specifically, Mahajan et al. (2019) show
that QMIX with ε-greedy exploration results in slow explo-
ration and sub-optimality. Mahajan et al. (2019) improve
exploration by conditioning an agent’s behavior on a shared
latent variable controlled by a hierarchical policy. Even
more recently, Wang et al. (2020) encourage coordinated
exploration by considering the influence of one agent’s be-
havior on other agents’ behaviors.

While all of the aforementioned exploration techniques
for multi-agent reinforcement learning significantly im-
prove results, they suffer from two common challenges: (1)
agents struggle to identify states that are worth exploring.
Identifying under-explored states is particularly challeng-
ing when the number of agents increase, since the state
and action space grows exponentially with the number of
agents. (2) Agents don’t coordinate their exploration ef-
forts toward under-explored states. To give an example,
consider a Push-Box task, where two agents need to jointly
push a heavy box to a specific location before observing a
reward. In this situation, instead of exploring the environ-
ment independently, agents need to coordinate pushing the
box within the environment to find the specific location.

To address both challenges, we propose cooperative multi-
agent exploration (CMAE). To identify states that are worth
exploring, we observe that, while the state space grows
exponentially, the reward function typically depends on a
small subset of the state space. For instance, in the afore-
mentioned Push-Box task, the state space contains the lo-
cation of agents and the box while the reward function only
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depends on the location of the box. To solve the task, ex-
ploring the box’s location is much more efficient than ex-
ploring the full state space. To encode this inductive bias
into CMAE, we propose a bottom-up exploration scheme.
Specifically, we project the high-dimensional state space
to low-dimensional spaces, which we refer to as restricted
spaces. Then, we gradually explore restricted spaces from
low- to high-dimensional. To ensure the agents coordinate
their exploration efforts, we select goals from restricted
spaces and train the exploration policies to reach the goal.
Specifically, inspired by Andrychowicz et al. (2017), we
reshape the rewards in the replay buffer such that a positive
reward is given when the goal is reached.

To show that CMAE improves results, we evaluate the pro-
posed approach on two multi-agent environment suites:
a discrete version of the multiple-particle environment
(MPE) (Lowe et al., 2017; Wang et al., 2020) and the
Starcraft multi-agent challenge (SMAC) (Samvelyan et al.,
2019). In both environments, we consider both dense-
reward and sparse-reward settings. Sparse-reward settings
are particularly challenging because agents need to coordi-
nate their behavior for extended timesteps before receiving
any non-zero reward. CMAE consistently outperforms the
state-of-the-art baselines in sparse-reward tasks. For more,
please see our project page: https://ioujenliu.
github.io/CMAE.

2. Preliminaries
We first define the multi-agent Markov decision process
(MDP) in Sec. 2.1 and introduce the multi-agent reinforce-
ment learning setting in Sec. 2.2.

2.1. Multi-Agent Markov Decision Process

A cooperative multi-agent system is modeled as a multi-
agent Markov decision process (MDP). An n-agent MDP
is defined by a tuple (S,A, T ,R,Z,O, n, γ,H). S is the
state space of the environment. A is the action space of
each agent. At each time step t, each agent’s target pol-
icy πi, i ∈ {1, . . . , n}, selects an action ati ∈ A. All
selected actions form a joint action at ∈ An. The tran-
sition function T maps the current state st and the joint
action at to a distribution over the next state st+1, i.e.,
T : S×An → ∆(S). All agents receive a collective reward
rt ∈ R according to the reward functionR : S ×An → R.
The objective of all agents’ policies is to maximize the
collective return

∑H
t=0 γ

trt, where γ ∈ [0, 1] is the dis-
count factor, H is the horizon, and rt is the collective re-
ward obtained at timestep t. Each agent i observes local
observation oti ∈ Z according to the observation function
O : S → Z . Note, observations usually reveal partial in-
formation about the state. For instance, suppose the state
contains the location of agents, while the local observation

of an agent may only contain the location of other agents
within a limited distance. All agents’ local observations
form a joint observation ot.

2.2. Multi-Agent Reinforcement Learning

In this paper, we follow the standard centralized train-
ing and decentralized execution (CTDE) paradigm (Lowe
et al., 2017; Rashid et al., 2018; Foerster et al., 2018; Ma-
hajan et al., 2019; Liu et al., 2019b): at training time, the
learning algorithm has access to all agents’ local observa-
tions, actions, and the state. At execution time, i.e., at test
time, each individual agent only has access to its own local
observation.

The proposed CMAE is applicable to off-policy MARL
methods (e.g., Rashid et al., 2018; Lowe et al., 2017;
Sunehag et al., 2018; Matignon et al., 2012; Liu et al.,
2019b). In off-policy MARL, exploration policies µ =
{µi}ni=1 are responsible for collecting data from the en-
vironment. The data in the form of transition tuples
(st,ot,at, st+1,ot+1, rt) is stored in a replay memory D,
i.e., D = {(st,ot,at, st+1,ot+1, rt)}t. The target policies
π = {πi}ni=1 are trained using transition tuples from the
replay memory.

3. Coordinated Multi-Agent Exploration
(CMAE)

In the following we first present an overview of CMAE be-
fore we discuss the method more formally.

Overview: The goal is to train the target policies π =
{πi}ni=1 of n agents to maximize the environment episode
return. Classical off-policy algorithms (Lowe et al., 2017;
Rashid et al., 2018; Mnih et al., 2013; 2015; Lillicrap et al.,
2016) typically use a noisy version of the target policies π
as exploration policies. In contrast, in CMAE, we decouple
exploration policies and target policies. Specifically, target
polices are trained to maximize the usual external episode
return. Exploration policies µ = {µi}ni=1 are trained to
reach shared goals, which are under-explored states, as the
job of an exploration policy is to collect data from those
under-explored states.

To train the exploration policies, shared goals are required.
How to choose shared goals from a high-dimensional state
space? As discussed in Sec. 1, while the state space grows
exponentially with the number of agents, the reward func-
tion often only depends on a small subset of the state space.
Concretely, consider an n-agent Push-Box game in a L×L
grid. The size of its state space is L2(n+1) (n agents plus
box in L2 space). However, the reward function depends
only on the location of the box, whose state space size is
L2. Obviously, to solve the task, exploring the location of
the box is much more efficient than uniformly exploring the
full state space.

https://ioujenliu.github.io/CMAE
https://ioujenliu.github.io/CMAE
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Algorithm 1: Training with Coordinated Multi-Agent Exploration (CMAE)
Init: space tree Tspace, counters c
Init: exploration policies µ = {µi}ni=1, target policies π = {πi}ni=1, replay buffer D

1 for episode = 1 . . . E do
2 Reset the environment. Observe state s1 and observations o1 = (o11, . . . , o

1
n)

3 for t = 1 . . . H do
4 Select at using a mixture of exploration and target policies αµ+ (1− α)π. α decreases linearly to 0
5 rt, st+1, ot+1 = environment.step(at)
6 Add transition tuple {st,ot,at, st+1,ot+1, rt} to D
7 UpdateCounters(c, st+1, ot+1)
8 TrainTarget(π, D)

9 if episode mod N = 0 then
10 g = SelectRestrictedSpaceGoal(c, Tspace, D, episode) . Select shared goal (Alg. 3)

11 TrainExp(µ, g, D) . Train exploration policies (Alg. 2)

Algorithm 2: Train Exploration Policies (Train-
Exp)

input : exploration policies µ = {µi}ni=1, shared
goal g, replay buffer D

1 for {st,ot,at, st+1,ot+1, rt} ∈ D do
2 if st is the shared goal g then
3 rt = rt + r̂

4 Update µ using {st,ot,at, st+1,ot+1, rt}

To achieve this, CMAE first explores a low-dimensional
restricted space Sk of the state space S, i.e., Sk ⊆ S . For-
mally, given anM -dimensional state space S, the restricted
space Sk associated with a set k is defined as

Sk = {projk(s) : ∀s ∈ S}, (1)

where projk(s) = (se)e∈k ‘restricts’ the space to ele-
ments e in set k, i.e., e ∈ k. Here, se is the e-th com-
ponent of the full state s, and k is a set from the power
set of {1, . . . ,M}, i.e., k ∈ P ({1, . . . ,M}), where P
denotes the power set. CMAE gradually moves from
low-dimensional restricted spaces (|k| small) to higher-
dimensional restricted spaces (|k| larger). This bottom-up
space selection is formulated as a search on a space tree
Tspace, where each node represents a restricted space Sk.

Alg. 1 summarizes this approach. At each step, a mixture
of the exploration policies µ = {µi}ni=1 and target policies
π = {πi}ni=1 is used to select actions (line 4). The re-
sulting experience tuple is then stored in a replay buffer D.
Counters c for each restricted space in the space tree Tspace
track how often a particular restricted state was observed
(line 7). The target policies π are trained directly using the
data within the replay buffer D. Every N episodes, a new
restricted space and goal g is chosen (line 10; see Sec. 3.2
for more). Exploration policies are continuously trained to
reach the selected goal (Sec. 3.1).

Algorithm 3: Select Restricted Space and Shared
Goal (SelectRestrictedSpaceGoal)

input : counters c, space tree Tspace, replay buffer
D, episode

output: selected goal g
1 Compute utility of restricted spaces in Tspace
2 Sample a restricted space Sk∗ from Tspace

following Eq. (4)
3 Sample a batch B = {si}|B|i=1 from D
4 g = arg mins∈B ck∗(projk∗(s))
5 if episode mod N ′ = 0 then
6 ExpandSpaceTree(c, Tspace, k∗) . Sec. 3.2
7 end
8 return g

3.1. Training of Exploration Policies

To encourage that exploration policies scout environments
in a coordinated manner, we train the exploration policiesµ
with an additional modified reward r̂. This modified reward
emphasizes the goal g of the exploration. For example, in
the two-agent Push-Box task, we use a particular joint loca-
tion of both agents and the box as a goal. Note, the agents
receive a bonus reward r̂ when the shared goal g, i.e., the
specified state, is reached. The algorithm for training ex-
ploration policies is summarized in Alg. 2: standard policy
training with a modified reward.

The goal g is obtained via a bottom-up search method.
We first explore low-dimensional restricted spaces that are
‘under-explored.’ We discuss this shared goal and re-
stricted space selection method next.

3.2. Shared Goal and Restricted Space Selection
Since the size of the state space S grows exponentially
with the number of agents, conventional exploration strate-
gies (Burda et al., 2019; Mahajan et al., 2019; Ronen



Cooperative Multi-Agent Exploration

I. Brafman, 2002) which strive to uniformly visit all states
are no longer tractable. To address this issue, we pro-
pose to first project the state space to restricted spaces, and
then perform shared goal driven coordinated exploration in
those restricted spaces. For simplicity, we first assume the
state space is finite and discrete. We discuss how to ex-
tend CMAE to continuous state spaces in Sec. 3.3. In the
following, we first show how to select the goal g given a
selected restricted space. Then we discuss how to select
restricted spaces and expand the space tree Tspace.

Shared Goal Selection: Given a restricted space Sk∗ and
its associated counter ck∗ , we choose the goal state g by
first uniformly sampling a batch of statesB from the replay
buffer D. From those states, we select the state with the
smallest count as the goal state g, i.e.,

g = arg min
s∈B

ck∗(projk∗(s)), (2)

where projk∗(s) is the projection from state space to the
restricted space Sk∗ . To make this concrete, consider again
the 2-agent Push-Box game. A restricted space may consist
of only the box’s location. Then, from batch B, a state in
which the box is in a rarely seen location will be selected
as the goal. For each restricted space Sk∗ , the associated
counter ck∗(sk∗) stores the number of times the state sk∗

occurred in the low-dimensional restricted space Sk∗ .

Given a goal state g, we train exploration policies µ using
the method presented in Sec. 3.1 (Alg. 2).

Restricted Space Selection: For an M -dimensional state
space, the number of restricted spaces is equivalent to the
size of the power set, i.e., 2M . It’s intractable to study all.

To address this issue, we propose a bottom-up tree-search
mechanism to select under-explored restricted spaces. We
start from low-dimensional restricted spaces and then grad-
ually grow the search tree to explore higher-dimensional
restricted spaces. Specifically, we maintain a space tree
Tspace where each node in the tree represents a restricted
space. Each restricted space k in the tree is associated with
a utility value uk, which guides the selection.

The utility permits to identify the under-explored restricted
spaces. For this, we study a normalized-entropy-based
mechanism to compute the utility of each restricted space
in Tspace. Intuitively, under-explored restricted spaces
have lower normalized entropy. To estimate the normal-
ized entropy of a restricted space Sk, we normalize the
counter ck to obtain a probability distribution pk(·) =
ck(·)/

∑
s∈Sk ck(s), which is then used to compute the nor-

malized entropy

ηk = Hk/Hmax,k = −

(∑
s∈Sk

pk(s) log pk(s)

)
/ log(|Sk|).

(3)

Then the utility uk is given by uk = −ηk. Finally, we sam-
ple a restricted space k∗ following a categorical distribution
over all spaces in the space tree Tspace, i.e.,

k∗ ∼ Cat(softmax((uk)Sk∈Tspace)). (4)

The restricted space and goal selection method is summa-
rized in Alg. 3. Note that the actual value of |Sk| is usually
unavailable. We defer the details of estimating |Sk| from
observed data to Sec. E.1 in the appendix.

Space Tree Expansion: The space tree Tspace is initial-
ized with one-dimensional restricted spaces. To consider
restricted spaces of higher dimension, we grow the space
tree from the current selected restricted space Sk∗ everyN ′

episodes. If Sk∗ is l-dimensional, we add restricted spaces
that are (l+ 1)-dimensional and contain Sk∗ as child nodes
of Sk∗ . Formally, we initialize the space tree T 0

space via

T 0
space = {Sk : |k| = 1, k ∈ P ({1, . . . ,M})}, (5)

where M denotes the dimension of the full state space and
P denotes the power set. Let T (h)

space and Sk∗ denote the
space tree after the h-th expansion and the current selected
restricted space respectively. Note, Sk∗ is sampled accord-
ing to Eq. (4) and no domain knowledge is used for select-
ing Sk∗ . The space tree after the (h+ 1)-th expansion is

T (h+1)
space = Th

space∪
{Sk : |k| = |k∗|+ 1, k∗ ⊂ k, k ∈ P ({1, . . . ,M})},

(6)
i.e., all restricted spaces that are (|k∗|+1)-dimensional and
contain Sk∗ are added. The counters associated with the
new restricted spaces are initialized from states in the re-
play buffer. Specifically, for each newly added restricted
space Sk∗ , we initialized the corresponding counter to be

ck∗(sk∗) =
∑
s∈D

1[projk∗(s) = sk∗ ], (7)

where 1[·] is the indicator function (1 if argument is true;
0 otherwise). Once a restricted space was added, we suc-
cessively increment the counter, i.e., the counter ck∗ isn’t
recomputed from scratch every episode. This ensures that
updating of counters is efficient. Goal selection, space se-
lection and tree expansion are summarized in Alg. 3.

3.3. Counting in Continuous State Spaces

For high-dimensional continuous state spaces, the coun-
ters in CMAE could be implemented using counting meth-
ods such as neural density models (Ostrovski et al., 2017;
Bellemare et al., 2016) or hash-based counting (Tang et al.,
2017). Both approaches have been shown to be effective
for counting in continuous state spaces.

In our implementation, we adopt hash-based count-
ing (Tang et al., 2017). Hash-based counting discretizes the
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state space via a hash function φ(s) : S → Z, which maps
a given state s to an integer that is used to index into a table.
Specifically, in CMAE, each restricted space Sk is associ-
ated with a hash function φk(s) : Sk → Z, which maps the
continuous sk to an integer. The hash function φk is used
when CMAE updates or queries the counter associated with
restricted space Sk. Empirically, we found CMAE with
hash-counting to perform well in environments with con-
tinuous state spaces.

3.4. Analysis

To provide more insights into how the proposed method
improves data efficiency, we analyze the two major com-
ponents of CMAE: (1) shared goal exploration and (2) re-
stricted space exploration on a simple multi-player matrix
game. We first define the multi-player matrix game:

Example 1. In a cooperative 2-player l-action matrix
game (Myerson, 2013), a payoff matrix U ∈ Rl×l, which
is unobservable to the players, describes the payoff the
agents obtain after an action configuration is executed. The
agents’ goal is to find the action configuration that maxi-
mizes the collective payoff.

To efficiently find the action configuration that results in
maximal payoff, the agents need to uniformly try differ-
ent action configurations. We show that exploration with
shared goals enables agents to see all distinct action config-
urations more efficiently than exploration without a shared
goal. Specifically, when exploring without shared goal, the
agents don’t coordinate their behavior. It is equivalent to
uniformly picking one action configuration from all config-
urations. When performing exploration with a shared goal,
the least visited action configuration will be chosen as the
shared goal. The two agents coordinate to choose the ac-
tions that achieve the goal at each step, making exploration
more efficient. The following claim formalizes this:

Claim 1. Consider the 2-player l-action matrix game
in Example 1. Letm = l2 denote the total number of action
configurations. Let T share

m and T non-share
m denote the number

of steps needed to see all m action configurations at least
once for exploration with shared goal and for exploration
without shared goal respectively. Then we have E[T share

m ] =
m and E[T non-share

m ] = m
∑m

i=1
1
i = Θ(m lnm).1

Proof. See supplementary material.

Next, we show that whenever the payoff matrix depends
only on one agent’s action the expected number of steps
to see the maximal reward can be further reduced by first
exploring restricted spaces.

1Θ(g) means asymptotically bounded above and below by g.

Claim 2. Consider a special case of Example 1 where the
payoff matrix depends only on one agent’s action. Let T sub

denote the number of steps needed to discover the maximal
reward when exploring the action space of agent one and
agent two independently. Let T full denote the number of
steps needed to discover the maximal reward when the full
action space is explored. Then, we have T sub = O(l) and
T full = O(l2).

Proof. See supplementary material.

Suppose the payoff matrix depends on all agents’ actions.
In this case, CMAE will move to the full space after the
restricted spaces are well-explored. For this, the expected
total number of steps to see the maximal reward is O(l +
l2) = O(l2).

4. Experimental Results
We evaluate CMAE on two challenging environments:
(1) a discrete version of the multiple-particle environment
(MPE) (Lowe et al., 2017; Wang et al., 2020); and (2) the
Starcraft multi-agent challenge (SMAC) (Samvelyan et al.,
2019). In both environments, we consider both dense-
reward and sparse-reward settings. In a sparse-reward set-
ting, agents don’t receive any intermediate rewards, i.e.,
agents only receive a reward when a task is completed.

Tasks: We first consider the following tasks of the sparse-
reward MPE environment:

Pass-sparse: Two agents operate within two rooms of a
30× 30 grid. There is one switch in each room. The rooms
are separated by a door and agents start in the same room.
The door will open only when one of the switches is oc-
cupied. The agents see collective positive reward and the
episode terminates only when both agents changed to the
other room. The state vector contains x, y locations of all
agents and binary variables to indicate if doors are open.

Secret-Room-sparse: Secret-Room extends Pass. There are
two agents and four rooms. One large room on the left and
three small rooms on the right. There is one door between
each small room and the large room. The switch in the
large room controls all three doors. The switch in each
small room only controls the room’s door. The agents need
to navigate to one of the three small rooms, i.e., the target
room, to receive positive reward. The grid size is 25 × 25.
The task is considered solved if both agents are in the target
room. The state vector contains x, y locations of all agents
and binary variables to indicate if doors are open.

Push-Box-sparse: There are two agents and one box in a
15 × 15 grid. Agents need to push the box to the wall to
receive positive reward. The box is heavy, so both agents
need to push the box in the same direction at the same time
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CMAE (Ours) Q-learning Q-learning + Bonus EITI EDTI
Pass-sparse 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Secret-Room-sparse 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Push-Box-sparse 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Pass-dense 5.00±0.00 1.25±0.02 1.42±0.14 0.00±0.00 0.18±0.01
Secret-Room-dense 4.00±0.57 1.62±0.16 1.53±0.04 0.00±0.00 0.00±0.00
Push-Box-dense 1.38±0.21 1.58±0.14 1.55±0.04 0.10±0.01 0.05±0.03

Table 1. Final metric of episode rewards of CMAE and baselines on sparse-reward (top) and dense-reward (bottom) MPE tasks.
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Figure 1. Training curves on sparse-reward and dense-reward MPE tasks.

to move the box. The task is considered solved if the box is
pushed to the wall. The state vector contains x, y locations
of all agents and the box.

For further details on the sparse-reward MPE tasks, please
see Wang et al. (2020). For completeness, in addition to
the aforementioned sparse-reward setting, we also consider
a dense-reward version of the three tasks. Please see Ap-
pendix C for more details on the environment settings.

To evaluate CMAE on environments with continu-
ous state space, we consider three standard tasks in
SMAC (Samvelyan et al., 2019): 3m, 2m vs 1z, and
3s vs 5z. While the tasks are considered challenging,
the commonly used reward is dense, i.e., carefully hand-
crafted intermediate rewards are used to guide the agents’
learning. However, in many real-world applications, de-
signing effective intermediate rewards may be very difficult
or infeasible. Therefore, in addition to the dense-reward
setting, we also consider the sparse-reward setting specified
by the SMAC environment (Samvelyan et al., 2019) for the
three tasks. In SMAC, the state vector contains for all units

on the map: x, y locations, health, shield, and unit type.
Note SMAC tasks are partially observable, i.e., agents only
observe information of units within a range. Please see Ap-
pendix D for more details on the SMAC environment.

Experimental Setup: For MPE tasks, we combine CMAE
with Q-learning (Sutton & Barto, 2018; Mnih et al.,
2013; 2015). We compare CMAE with exploration via
information-theoretic influence (EITI) and exploration via
decision-theoretic influence (EDTI) (Wang et al., 2020).
EITI and EDTI results are obtained using the publicly
available code released by the authors.

For a more complete comparison, we also show the results
of Q-learning with ε-greedy and Q-learning with count-
based exploration (Tang et al., 2017), where exploration
bonus is given when a novel state is visited.

For SMAC tasks, we combine CMAE with QMIX (Rashid
et al., 2018). We compare with QMIX (Rashid et al.,
2018), QMIX with count-based exploration, weighted
QMIX (Rashid et al., 2020a), and weighted QMIX with
count-based exploration (Tang et al., 2017). For QMIX
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CMAE (Ours) Weighted QMIX Weighted QMIX + Bonus QMIX QMIX + Bonus
3m-sparse 47.7±35.1 2.7±5.1 11.5±8.6 0.0±0.0 11.7±16.9
2m vs 1z-sparse 44.3±20.8 0.0±0.0 19.4±18.1 0.0±0.0 19.8±14.1
3s vs 5z-sparse 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
3m-dense 98.7±1.7 98.3±2.5 98.9±1.7 97.9±3.6 97.3±3.0
2m vs 1z-dense 98.2±0.1 98.5±0.1 96.0±1.8 97.1±2.4 95.8±1.7
3s vs 5z-dense 81.3±16.1 92.2±6.6 95.3±2.2 75.0±17.6 78.1±24.4

Table 2. Final metric of success rate (%) of CMAE and baselines on sparse-reward (top) and dense-reward (bottom) SMAC tasks.

and weighted QMIX, we use the publicly available code re-
leased by the authors. In all experiments we use restricted
spaces of less than four dimensions.

Note, to increase efficiency of the baselines with count-
based exploration, in both MPE and SMAC experiments,
the counts are shared across all agents. We use ‘+Bonus’ to
refer to a baseline with count-based exploration.

Evaluation Protocol: To ensure a rigorous and fair evalu-
ation, we follow the evaluation protocol suggested by Hen-
derson et al. (2017); Colas et al. (2018). We evaluate the
target policies in an independent evaluation environment
and report final metric. The final metric is an average
episode reward or success rate over the last 100 evaluation
episodes, i.e., 10 episodes for each of the last ten policies
during training. We repeat all experiments using five runs
with different random seeds.

Note that EITI and EDTI (Wang et al., 2020) report the
episode rewards vs. the number of model updates as an
evaluation metric. This isn’t common when evaluating RL
algorithms as this plot doesn’t reflect an RL approach’s
data efficiency. In contrast, the episode reward vs. num-
ber of environment steps is a more common metric for
data efficiency and is adopted by many RL works (Lilli-
crap et al., 2016; Wu et al., 2017; Mnih et al., 2013; 2015;
Andrychowicz et al., 2017; Shen et al., 2020; Liu et al.,
2019a; Li et al., 2019), particularly works on RL explo-
ration (Mahajan et al., 2019; Taiga et al., 2020; Pathak
et al., 2017; Tang et al., 2017; Rashid et al., 2020b). There-
fore, following most prior works, we report the episode re-
wards vs. the number of environment steps.

Results: We first compare CMAE with baselines on Pass,
Secret Room, and Push-Box. The final metric and stan-
dard deviation is reported in Tab. 1. In the sparse-reward
setting, only CMAE is able to solve the tasks, while all
baselines do not learn a meaningful policy. Correspond-
ing training curves with standard deviation are included
in Fig. 1. CMAE achieves a 100% success rate on Pass,
Secret-room, and Push-Box within 3M environment steps.
In contrast, baselines cannot solve the task within the given
step budget of 3M steps.
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(Ours)
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Agent 1 Agent 2 Agent 1
300K env. steps 1.5M env. steps
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Figure 2. Visitation map (log scale) of CMAE (top) and ε-greedy
(bottom) on the Secret-Room task.

Recently, Taiga et al. (2020) pointed out that many existing
exploration strategies excel in challenging sparse-reward
tasks but fail in simple tasks that can be solved by using
classical exploration methods such as ε-greedy. To ensure
CMAE doesn’t fail in simpler tasks, we run experiments
on the dense-reward version of the three tasks. As shown
in Tab. 1, CMAE achieves similar or better performance
than the baselines in dense-reward settings.

We also compare the exploration behavior of CMAE to Q-
learning with ε-greedy exploration using the Secret-Room
environment. The visit count (in log scale) of each loca-
tion is visualized in Fig. 2. In early stages of training, both
CMAE (top) and ε-greedy (bottom) explore only locations
in the left room. However, after 1.5M steps, CMAE agents
frequently visit the three rooms on the right while ε-greedy
agents mostly remain within the left room.

On SMAC, we first compare CMAE with baselines in
the sparse-reward setting. Since the number of nodes
in the space tree grows combinatorially, discovering use-
ful high-dimensional restricted spaces for tasks with high-
dimensional state space, such as SMAC, may be infea-
sible. However, we found empirically that exploring of
low-dimensional restricted spaces is already beneficial in
a subset of SMAC tasks. The results on SMAC tasks are
summarized in Tab. 2, where final metric and standard de-
viation of evaluation success rate is reported. As shown
in Tab. 2 (top), in 3m-sparse and 2m vs 1z-sparse, QMIX
and weighted QMIX, which rely on ε-greedy exploration,
rarely solve the task. When combined with count-based
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Figure 3. Training curves on sparse-reward SMAC tasks.
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Figure 4. Ablation: CMAE, CMAE without decoupling target
and exploration policies, and CMAE without restricted space ex-
ploration on 3m-sparse.

exploration, both QMIX and weighted QMIX are able to
achieve 18% to 20% success rate. CMAE achieves much
higher success rate of 47.7% and 44.3% on 3m-sparse
and 2m vs 1z-sparse, respectively. Corresponding training
curves with standard deviation are included in Fig. 3. We
also run experiments on dense-reward SMAC tasks, where
handcrafted intermediate rewards are available. As shown
in Tab. 2 (bottom), CMAE achieves similar performance to
state-of-the-art baselines in dense-reward SMAC tasks.

Limitations: To show limitations of the proposed method,
we run experiments on the sparse-reward version of
3s vs 5z, which is classified as ‘hard’ even in the dense-
reward setting (Samvelyan et al., 2019). As shown in Tab. 2
and Fig. 3, CMAE as well as all baselines fail to solve the
task. In 3s vs 5z, the only winning strategy is to force the
enemies to scatter around the map and attend to them one
by one (Samvelyan et al., 2019). Without hand-crafted in-
termediate reward, we found it to be extremely challenging
for any approach to pick up this strategy. This demonstrates
that efficient exploration for MARL in sparse-reward set-
tings is still a very challenging and open problem, which
requires more attention from the community.

Ablation Study: To better understand the approach, we
perform an ablation study to examine the effectiveness of

the proposed (1) target and exploration policy decoupling
and (2) restricted space exploration. We conduct the exper-
iments on 3m-sparse. As Fig. 4 shows, without decoupling
the exploration and target policies, the success rate drops
from 47.7% to 25.4%. In addition, without restricted space
exploration, i.e., by directly exploring the full state space,
the success rate drops to 9.4%. This demonstrates that the
restricted space exploration and policy decoupling are es-
sential to CMAE’s success.

5. Related Work
We discuss recently developed methods for exploration in
reinforcement learning, multi-agent reinforcement learn-
ing, and concurrent reinforcement learning subsequently.

Exploration for Deep Reinforcement Learning: A wide
variety of exploration techniques for deep reinforcement
learning have been studied, deviating from classical noise-
based methods. Generalization of count-based approaches,
which give near-optimal results in tabular reinforcement
learning, to environments with continuous state spaces
have been proposed. For instance, Bellemare et al. (2016)
propose a density model to measure the agent’s uncer-
tainty. Pseudo-counts are derived from the density model
which give rise to an exploration bonus encouraging assess-
ment of rarely visited states. Inspired by Bellemare et al.
(2016), Ostrovski et al. (2017) discussed a neural density
model, to estimate the pseudo count, and Tang et al. (2017)
use a hash function to estimate the count.

Besides count-based approaches, meta-policy gradient (Xu
et al., 2018) uses the target policy’s improvement as the
reward to train an exploration policy. The resulting ex-
ploration policy differs from the actor policy, and enables
more global exploration. Stadie et al. (2016) propose
an exploration strategy based on assigning an exploration
bonus from a concurrently learned environment model. Lee
et al. (2020) cast exploration as a state marginal matching
(SMM) problem and aim to learn a policy for which the
state marginal distribution matches a uniform distribution.
Other related works on exploration include curiosity-driven



Cooperative Multi-Agent Exploration

exploration (Pathak et al., 2017), diversity-driven explo-
ration (Hong et al., 2018), GEP-PG (Colas et al., 2018),
EX2 (Fu et al., 2017), bootstrap DQN (Osband et al.,
2016) and random network distillation (Burda et al., 2019).
In contrast to our approach, all the techniques mentioned
above target single-agent deep reinforcement learning.

Multi-agent Deep Reinforcement Learning (MARL):
MARL (Lowe et al., 2017; Foerster et al., 2017; Liu et al.,
2019b; Rashid et al., 2020a; Jain et al., 2020; Zhou et al.,
2020; Christianos et al., 2020; Liu et al., 2020; Jain et al.,
2021; Hu et al., 2021) has drawn much attention recently.
MADDPG (Lowe et al., 2017) uses a central critic that
considers other agents’ action policies to handle the non-
stationary environment issues in the multi-agent setting.
DIAL (Foerster et al., 2016) uses an end-to-end differen-
tiable architecture that allows agents to learn to communi-
cate. Jiang & Lu (2018) propose an attentional commu-
nication model that learns when communication is helpful
for a cooperative setting. Foerster et al. (2017) add a ‘fin-
gerprint’ to each transition tuple in the replay memory to
track the age of the transition tuple and stabilize training.
In ‘Self-Other-Modeling’ (SOM) (Raileanu et al., 2018), an
agent uses its own policy to predict other agents’ behavior
and states.

While inter-agent communication (Inala et al., 2020; Rang-
wala & Williams, 2020; Zhang et al., 2020; Ding et al.,
2020; Jiang & Lu, 2018; Foerster et al., 2016; Rashid et al.,
2018; Omidshafiei et al., 2017; Jain et al., 2019) has been
considered, for exploration, multi-agent approaches rely on
classical noise-based exploration. As discussed in Sec. 1,
a noise-based approach prevents the agents from sharing
their understanding of the environment. A team of cooper-
ative agents with a noise-based exploration policy can only
explore local regions that are close to their individual actor
policy, which contrasts the approach from CMAE.

Recently, approaches that consider coordinated exploration
have been proposed. Multi-agent variational exploration
(MAVEN) (Mahajan et al., 2019) introduces a latent space
for hierarchical control. Agents condition their behavior
on the latent variable to perform committed exploration.
Influence-based exploration (Wang et al., 2020) captures
the influence of one agent’s behavior on others. Agents
are encouraged to visit ‘interaction points’ that will change
other agents’ behaviour.

Concurrent Deep Reinforcement Learning: Di-
makopoulou & Roy (2018) study coordinated exploration
in concurrent reinforcement learning, maintaining an
environment model and extending posterior sampling such
that agents explore in a coordinated fashion. Parisotto
et al. (2019) proposed concurrent meta reinforcement
learning (CMRL) which permits a set of parallel agents to
communicate with each other and find efficient exploration

strategies. The concurrent setting differs from the multi-
agent setting of our approach. In a concurrent setting,
agents operate in different instances of an environment,
i.e., one agent’s action has no effect on the observations
and rewards received by other agents. In contrast, in the
multi-agent setting, agents share the same instance of an
environment. An agent’s action changes observations and
rewards observed by other agents.

6. Conclusion
We propose cooperative multi-agent exploration (CMAE).
It defines shared goals and learns coordinated exploration
policies. To find a goal for efficient exploration we
study restricted space selection which helps, particularly in
sparse-reward environments. Empirically, we demonstrate
that CMAE increases exploration efficiency. We hope this
is a first step toward efficient coordinated exploration.
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Appendix: Cooperative Exploration
for Multi-Agent Deep Reinforcement
Learning
In this appendix we first provide the proofs for Claim 1
and Claim 2 in Sec. A and Sec. B. We then provide in-
formation regarding the MPE and SMAC environments
(Sec. C, Sec. D), implementation details (Sec. E), and the
absolute metric (Sec. F). Next, we provide additional re-
sults on MPE tasks (Sec. G), additional results of baselines
(Sec. H) and training curves (Sec. I).

A. Proof of Claim 1
Claim 1. Consider the 2-player l-action matrix game
in Example 1. Letm = l2 denote the total number of action
configurations. Let T share

m and T non-share
m denote the number

of steps needed to see all m action configurations at least
once for exploration with shared goal and for exploration
without shared goal respectively. Then we have E[T share

m ] =
m and E[T non-share

m ] = m
∑m

i=1
1
i = Θ(m lnm).2

Proof. When exploring without shared goal, the agents
don’t coordinate their behavior. It is equivalent to uni-
formly picking one action configuration from the m con-
figurations. We aim to show after T non-share

m time steps, the
agents tried all m distinct action configurations. Let Ti be
the number of steps to observe the i-th distinct action con-
figuration after seeing i− 1 distinct configurations. Then

E[T non-share
m ] = E[T1] + · · ·+ E[Tm]. (8)

In addition, let P (i) denotes the probability of observing
the i-th distinct action configuration after observing i − 1
distinct configurations. We have

P (i) = 1− i− 1

m
=
m− i+ 1

m
. (9)

Note that Ti follows a geometric distribution with success
probability P (i) = m−i+1

m . Then the expected number of
timesteps to see the i-th distinct configuration after seeing
i− 1 distinct configurations is

E[Ti] =
m

m− i+ 1
. (10)

Hence, we obtain

E[T non-share
m ] = E[T1] + · · ·+ E[Tm]

=

m∑
i=1

m

m− i+ 1

= m

m∑
i=1

1

i
.

(11)

2Θ(g) means asymptotically bounded above and below by g.

From calculus,
∫m

1
1
xdx = lnm. Hence we obtain the fol-

lowing inequality

m∑
i=1

1

i+ 1
≤
∫ m

1

1

x
dx = lnm ≤

m∑
i=1

1

i
. (12)

From Eq. (12), we obtain
∑m

i=1
1
i = O(lnm)3 and∑m

i=1
1
i = Ω(lnm)4, which implies

m∑
i=1

1

i
= Θ(lnm). (13)

Combining Eq. (11) and Eq. (13), we get E[T non-share
m ] =

Θ(m lnm).

When performing exploration with shared-goal, the least
visited action configuration will be chosen as the shared
goal. The two agents coordinate to choose the actions that
achieve the goal at each step. Hence, at each time step, the
agents are able to visit a new action configuration. There-
fore, exploration with shared goal needs m timesteps to
visit all m action configurations, i.e., T share

m = m, which
completes the proof.

B. Proof of Claim 2
Claim 2. Consider a special case of Example 1 where the
payoff matrix depends only on one agent’s action. Let T sub

denote the number of steps needed to discover the maximal
reward when exploring the action space of agent one and
agent two independently. Let T full denote the number of
steps needed to discover the maximal reward when the full
action space is explored. Then, we have T sub = O(l) and
T full = O(l2).

Proof. When we explore the action spaces of agent one and
agent two independently, there are 2l distinct action config-
urations (l action configurations for each agent) to explore.
Since the reward function depends only on one agent’s ac-
tion, one of these 2l action configurations must lead to the
maximal reward. Therefore, by checking distinct action
configurations at each time step, we need at most 2l steps
to receive the maximal reward, i.e., E[T sub] = O(l).

In contrast, when we explore the joint action space of agent
one and agent two. There are l2 distinct action config-
urations. Because the reward function depends only on
one agent’s action, l of these l2 action configurations must
lead to the maximal reward. In the worst case, we choose
the l2 − l action configurations that don’t result in max-
imal reward in the first l2 − l steps and receive maxi-
mal reward at the l2 − l + 1 step. Therefore, we have

3O(g) means asymptotically bounded above by g.
4Ω(g) means asymptotically bounded below by g.
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E[T full] = O(l2 − l + 1) = O(l2), which concludes the
proof.

C. Details Regarding MPE Environments
In this section we provide details regarding the sparse-
reward and dense-reward version of MPE tasks. We first
present the sparse-reward version of MPE:

• Pass-sparse: Two agents operate within two rooms of
a 30 × 30 grid. There is one switch in each room,
the rooms are separated by a door and agents start in
the same room. The door will open only when one
of the switches is occupied. The agents see collective
positive reward and the episode terminates only when
both agents changed to the other room. The task is
considered solved if both agents are in the right room.

• Secret-Room-sparse: Secret-Room-sparse extends
Pass-sparse. There are two agents and four rooms.
One large room on the left and three small rooms on
the right. There is one door between each small room
and the large room. The switch in the large room con-
trols all three doors. The switch in each small room
only controls the room’s door. All agents need to nav-
igate to one of the three small rooms, i.e., target room,
to receive positive reward. The grid size is 25 × 25.
The task is considered solved if both agents are in the
target room.

• Push-Box-sparse: There are two agents and one box in
a 15×15 grid. Agents need to push the box to the wall
to receive positive reward. The box is heavy, so both
agents need to push the box in the same direction at
the same time to move the box. The task is considered
solved if the box is pushed to the wall.

• Island-sparse: Two agents and a wolf operate in a
10 × 10 grid. Agents get a collective reward of 300
when crushing the wolf. The wolf and agents have
maximum energy of eight and five respectively. The
energy will decrease by one when being attacked.
Therefore, one agent cannot crush the wolf. The
agents need to collaborate to complete the task. The
task is considered solved if the wolf’s health reaches
zero.

To study the performance of CMAE and baselines in a
dense-reward setting, we add ‘checkpoints’ to guide the
learning of the agents. Specifically, to add checkpoints, we
draw concentric circles around a landmark, e.g., a switch,
a door, a box. Each circle is a checkpoint region. Then, the
first time an agent steps in each of the checkpoint regions,
the agent receive an additional checkpoint reward of +0.1.

• Pass-dense: Similar to Pass-sparse, but the agents see
dense checkpoint rewards when they move toward the
switches and the door. Specifically, when the door
is open, agents receive up to ten checkpoint rewards
when they move toward the door and the switch in the
right room.

• Secret-Room-dense: Similar to Secret-Room-sparse,
but the checkpoint rewards based on the agents’ dis-
tance to the door and the target room’s switch are
added. Specifically, when the door is open, agents re-
ceive up to ten checkpoint rewards when they move
toward the door and the switch in the target room.

• Push-Box-dense: Similar to Push-Box-sparse, but the
checkpoint rewards based on the ball’s distance to the
wall is added. Specifically, agents receive up to six
checkpoint rewards when they push the box toward
the wall.

• Island-dense: Similar to Island-sparse, but the agent
receives +1 reward when the wolf’s energy decrease.

D. Details of SMAC environments
In this section, we present details for the sparse-reward and
dense-reward versions of the SMAC tasks. We first discuss
the sparse-reward version of the SMAC tasks.

• 3m-sparse: There are three marines in each team.
Agents need to collaboratively take care of the three
marines on the other team. Agents only see a reward
of +1 when all enemies are taken care of.

• 2m vs 1z-sparse: There are two marines on our team
and one Zealot on the opposing team. In 2m vs 1z-
dense, Zealots are stronger than marines. To take care
of the Zealot, the marines need to learn to fire alter-
natingly so as to confuse the Zealot. Agents only see
a reward of +1 when all enemies are taken care of.

• 3s vs 5z-sparse: There are three Stalkers on our team
and five Zealots on the opposing team. Because
Zealots counter Stalkers, the Stalkers have to learn to
force the enemies to scatter around the map and attend
to them one by one. Agents only see a reward of +1
when all enemies are attended to.

The details of the dense-reward version of the SMAC tasks
are as follows.

• 3m-dense: This task is similar to 3m-sparse, but the
reward is dense. An agent sees a reward of +1 when it
causes damage to an enemy’s health. A reward of −1
is received when its health decreases. All the rewards
are collective. A reward of +200 is obtained when all
enemies are taken care of.
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CMAE with QMIX
QMIX + bonus

Weighted QMIX + bouns
Batch size 32 32
Discounted factor 0.99 0.99
Critic learning rate 0.0005 0.0005
Agent learning rate 0.0005 0.0005
Optimizer RMSProp RMSProp
Replay buffer size 5000 5000
Epsilon anneal step 50000 {50000, 1M}
Exploration bonus coefficient N.A. {1, 10, 50}
Goal bonus (r̂) {0.01, 0.1, 1} N.A.

Table 3. Hyper-parameters of CMAE and baselines for SMAC tasks.

• 2m vs 1z-dense: Similar to 2m vs 1z-sparse, but the
reward is dense. The reward function is similar to 3m-
dense.

• 3s vs 5z-dense: Similar to 3s vs 5z-sparse, but the re-
ward is dense. The reward function follows the one in
the 3m-dense task.

Note that for all SMAC experiments we used StarCraft ver-
sion SC2.4.6.2.69232. The results for different versions are
not directly comparable since the underlying dynamics dif-
fer. Please see Samvelyan et al. (2019)5 for more details
regarding the SMAC environment.

E. Implementation Details
E.1. Normalized Entropy Estimation

As discussed in Sec. 3, we use Eq. (3) to compute the nor-
malized entropy for a restricted space Sk, i.e.,

ηk = Hk/Hmax,k = −

(∑
s∈Sk

pk(s) log pk(s)

)
/ log(|Sk|).

Note that |Sk| is typically unavailable even in discrete state
spaces. Therefore, we use the number of current observed
distinct outcomes |Ŝk| to estimate |Sk|. For instance, sup-
pose Sk is a one-dimensional restricted state space and we
observe Sk takes values −1, 0, 1. Then |Ŝk| = 3 is used to
estimate |Sk| in Eq. (3). |Ŝk| typically gradually increases
during exploration. In addition, for |Ŝk| = 1, i.e., for a con-
stant restricted space, the normalized entropy will be set to
infinity.

E.2. Architecture and Hyper-Parameters

We present the details of architectures and hyper-
parameters of CMAE and baselines next.

5https://github.com/oxwhirl/smac

MPE environments: We combine CMAE with Q-
learning. For Pass, Secret-room, and Push-box, the Q value
function is represented via a table. The Q-table is initial-
ized to zero. The update step size for exploration policies
and target policies are 0.1 and 0.05 respectively. For Island
we use a DQN (Mnih et al., 2013; 2015). The Q-function is
parameterized by a three-layer perceptron (MLP) with 64
hidden units per layer and ReLU activation function. The
learning rate is 0.0001 and the replay buffer size is 1M . In
all MPE tasks, the bonus r̂ for reaching a goal is 1, and the
discount factor γ is 0.95.

For the baseline EITI and EDTI (Wang et al., 2020), we
use their default architecture and hyper-parameters. The
main reason that EITI and EDTI need a lot of environment
steps for convergence according to our observations: a long
rollout (512 steps × 32 processes) between model updates
is used. In an attempt to optimize the data efficiency of
baselines, we also study shorter rollout length, i.e., {128,
256}, for both EITI and EDTI. However, we didn’t observe
an improvement over the default setting. Specifically, after
more than 500M environment steps of training on Secret-
Room, EITI with 128 and 256 rollout length achieves 0.0%
and 54.8% success rate. EDTI with 128 and 256 rollout
length achieves 0.0% and 59.6% success rate, which is
much lower than the success rate of 80% achieved by using
the default setting.

SMAC environment: We combine CMAE with
QMIX (Rashid et al., 2018). Following their default
setting, for both exploration and target policies, the
agent is a DRQN (Hausknecht & Stone, 2015) with a
GRU (Chung et al., 2014) recurrent layer with a 64-
dimensional hidden state. Before and after the GRU layer
is a fully-connected layer of 64 units. The mix network
has 32 units. The discount factor γ is 0.99. The replay
memory stores the latest 5000 episodes, and the batch size
is 32. RMSProp is used with a learning rate of 5 · 10−4.
The target network is updated every 100 episodes. For
goal bonus r̂ (Alg. 2), we studied {0.01, 0.1, 1} and found
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CMAE (Ours) Q-learning Q-learning + Bonus EITI EDTI

Pass-sparse Final 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Absolute 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Secret-Room-sparse Final 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Absolute 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Push-Box-sparse Final 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Absolute 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Island-sparse Final 0.55±0.30 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Absolute 0.61±0.23 0.00±0.00 0.01±0.01 0.00±0.00 0.00±0.00

Pass-dense Final 5.00±0.00 1.25±0.02 1.42±0.14 0.00±0.00 0.18±0.01
Absolute 5.00±0.00 1.30±0.03 1.46±0.08 0.00±0.00 0.20±0.01

Secret-Room-dense Final 4.00±0.57 1.62±0.16 1.53±0.04 0.00±0.00 0.00±0.00
Absolute 4.00±0.57 1.63±0.03 1.57±0.06 0.00±0.00 0.00±0.00

Push-Box-dense Final 1.38±0.21 1.58±0.14 1.55±0.04 0.10±0.01 0.05±0.03
Absolute 1.38±0.21 1.59±0.04 1.55±0.04 0.00±0.00 0.18±0.01

Island-dense Final 138.00±74.70 87.03±65.80 110.36±71.99 11.18±0.62 10.45±0.61
Absolute 163.25±68.50 141.60±92.53 170.14±62.10 16.84±0.65 16.42±0.86

Table 4. Final metric and absolute metric of CMAE and baselines on sparse-reward and dense-reward MPE tasks.

CMAE (Ours) Weighted QMIX Weighted QMIX + Bonus QMIX QMIX + Bonus

3m-sparse Final 47.7±35.1 2.7±5.1 11.5±8.6 0.0±0.0 11.7±16.9
Absolute 62.0±41.0 8.1±4.5 15.6±7.3 0.0±0.0 22.8±18.4

2m vs 1z-sparse Final 44.3±20.8 0.0±0.0 19.4±18.1 0.0±0.0 19.8±14.1
Absolute 47.7±35.1 0.0±0.0 23.9±16.7 0.0±0.0 30.3±26.7

3s vs 5z-sparse Final 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Absolute 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

3m-dense Final 98.7±1.7 98.3±2.5 98.9±1.7 97.9±3.6 97.3±3.0
Absolute 99.3±1.8 98.8±0.3 99.0±0.3 99.4±2.1 98.5±1.2

2m vs 1z-dense Final 98.2±0.1 98.5±0.1 96.0±1.8 97.1±2.4 95.8±1.7
Absolute 98.7±0.4 98.6±1.6 99.1±0.9 99.1±0.6 96.0±1.6

3s vs 5z-dense Final 81.3±16.1 92.2±6.6 95.3±2.2 75.0±17.6 78.1±24.4
Absolute 85.4±22.6 95.4±4.4 95.4±3.2 76.5±24.3 79.1±14.2

Table 5. Final metric and absolute metric of success rate (%) of CMAE and baselines on sparse-reward and dense-reward SMAC tasks.

0.1 to work well in most tasks. Therefore, we use r̂ = 0.1
for all SMAC tasks. The hyper-parameters of CMAE with
QMIX and baselines are summarized in Tab. 3.

F. Absolute Metric and Final Metric
In addition to the final metric reported in Tab. 1 and Tab. 2,
following Henderson et al. (2017); Colas et al. (2018), we
also report the absolute metric. Absolute metric is the
best policies’ average episode reward over 100 evaluation
episodes. The final metric and absolute metric of CMAE
and baselines on MPE and SMAC tasks are summarized
in Tab. 4 and Tab. 5.

G. Additional Results on MPE Task: Island
In addition to the MPE tasks considered in Sec. 4, we con-
sider one more challenging MPE task: Island. The details
of both sparse-reward and dense-reward version of Island,
i.e., Island-sparse and Island-dense are presented in Sec. C.
We compare CMAE to Q-learning, Q-learning with count-
based exploration, EITI, and EDTI on both Island-sparse
and Island-dense. The results are summarized in Tab. 4.
As Tab. 4 shows, in the sparse-reward setting, CMAE is
able to achieve higher than 50% success rate. In contrast,
baselines struggle to solve the task. In the dense-reward
setting, CMAE performs similar to baselines. The training
curves are shown in Fig. 5 and Fig. 6.
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Task (target success rate) CMAE (Ours) EITI EDTI
Pass-sparse (80%) 2.43M±0.10M 384M±1.2M 381M±2.8M
Secret-Room-sparse (80%) 2.35M±0.05M 448M±10.0M 382M±9.4M
Push-Box-sparse (10%) 0.47M±0.04M 307M±2.3M 160M±12.1M
Push-Box-sparse (80%) 2.26M±0.02M 307M±3.9M 160M±8.2M
Island-sparse (20%) 7.50M±0.12M 480M±5.2M 322M±1.4M
Island-sparse (50%) 13.9M±0.21M > 500M > 500M
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Table 6. Environment steps required to achieve the indicated target success rate on Pass-sparse, Secret-Room-sparse, Push-Box-sparse,
and Island-sparse environments.

H. Additional Results of Baselines
Following the setting of EITI and EDTI (Wang et al., 2020),
we train both baselines for 500M environment steps. On
Pass-sparse, Secret-Room-sparse, and Push-Box-sparse,
we observe that EITI and EDTI (Wang et al., 2020) need
more than 300M steps to achieve an 80% success rate. In
contrast, CMAE achieves a 100% success rate within 3M
environment steps. On Island-sparse, EITI and EDTI need
more than 3M environment steps to achieve a 20% success
rate while CMAE needs less than 8M environment steps to
achieve the same success rate. The results are summarized
in Tab. 6.

I. Additional Training Curves
The training curves of CMAE and baselines on both
sparse-reward and dense-reward MPE tasks are shown
in Fig. 5 and Fig. 6. The training curves of CMAE
and baselines on both sparse-reward and dense-reward
SMAC tasks are shown in Fig. 7 and Fig. 8. As shown
in Fig. 5, Fig. 6, Fig. 7, and Fig. 8, in challenging sparse-
reward tasks, CMAE consistently achieves higher success
rate than baselines. In dense-reward tasks, CMAE has sim-
ilar performance to baselines.
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Figure 5. Training curves on sparse-reward MPE tasks.
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Figure 6. Training curves on dense-reward MPE tasks.
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Figure 7. Training curves on sparse-reward SMAC tasks.
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Figure 8. Training curves on dense-reward SMAC tasks.


